SKN 2F50

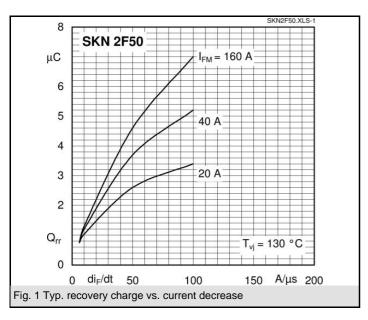
Stud Diode

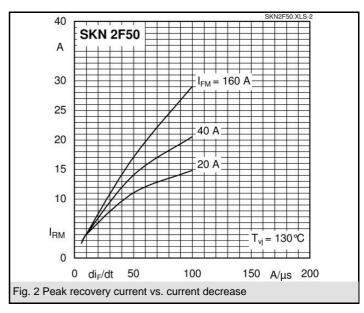
Fast Recovery Rectifier Diode

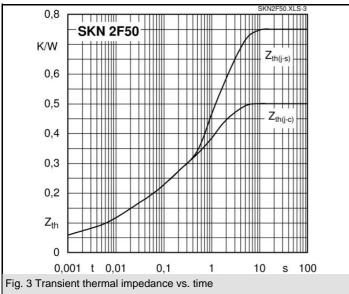
SKN 2F50

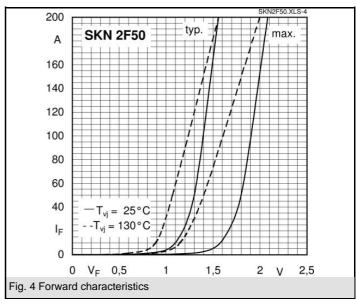
Features

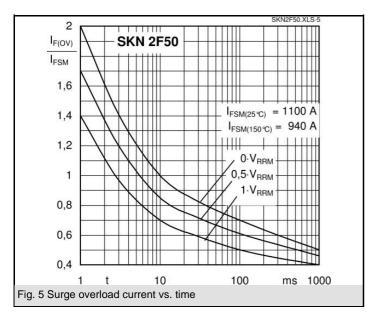
- Small recovered charge
- Soft recovery
- Up to 1000 V reverse voltage
- Hermetic metal case with glass insulator
- Threaded stud ISO M6 or 1/4-28 UNF
- SKN: anode to stud

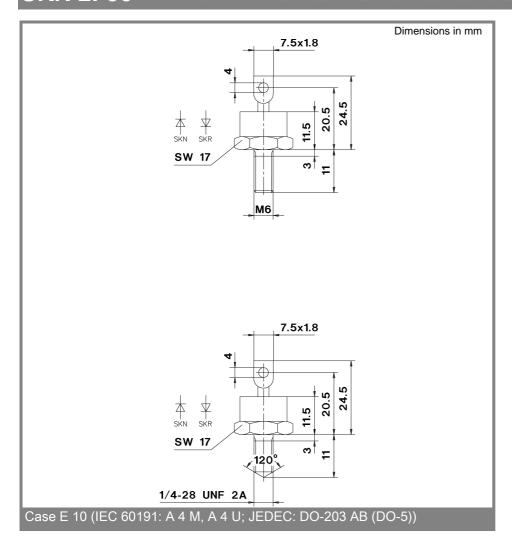

Typical Applications


- Inverse diodes for power transistors, GTO thyristors, asymmetric thyristors
- SMPS, inverters, choppers
- For severe ambient conditions


V_{RSM}	V_{RRM}	I _{FRMS} = 100 A (maximum value for continuous operation)	
V	V	$I_{FAV} = 50 \text{ A (sin. } 180; 5000 \text{ Hz; } T_c = 105 \text{ °C)}$	
400	400	SKN 2F50/04	
400	400	SKN 2F50/04UNF	
600	600	SKN 2F50/06	
600	600	SKN 2F50/06UNF	
800	800	SKN 2F50/08	
800	800	SKN 2F50/08UNF	
1000	1000	SKN 2F50/10	
1000	1000	SKN 2F50/10UNF	


Symbol	Conditions	Values	Units
I _{FAV}	sin. 180; T _c = 85 (100) °C	69 (57)	Α
I _{FAV}	K3; T _a = 45 °C; sin. 180; 5000 Hz	18	
I _{FSM}	T _{vi} = 25 °C; 10 ms	1100	Α
	T _{vi} = 150 °C; 10 ms	940	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	6000	A²s
	T _{vj} = 150 °C; 8,3 10 ms	4400	A²s
V _F	T _{vi} = 25 °C; I _F = 50 A	max. 1,8	V
$V_{(TO)}$	T _{vi} = 150 °C	max. 1,2	V
r _T	T _{vi} = 150 °C	max. 4	mΩ
I_{RD}	$T_{vj} = 25 ^{\circ}\text{C}; V_{RD} = V_{RRM}$	max. 0,4	mA
I_{RD}	T_{vj} = 130 °C; $V_{RD} = V_{RRM}$	max. 50	mA
Q _{rr}	T _{vi} = 130 °C, I _F = 100 A,	3	μC
I _{RM}	$-di/dt = 30 \text{ A/}\mu\text{s}, \text{ V}_{\text{R}} = 30 \text{ V}$	10	Α
t _{rr}		600	ns
E _{rr}		-	mJ
R _{th(j-c)}		0,5	K/W
R _{th(c-s)}		0,25	K/W
T_{vj}		- 40 + 150	°C
T _{stg}		- 55 + 150	°C
V _{isol}		-	V~
M_s	to heatsink	2,5	Nm
а		5 * 9,81	m/s²
m	approx.	20	g
Case		E 10	





This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.